學(xué)術(shù)講座

中國(guó)科學(xué)院院士張荻:金屬材料的構(gòu)型化復(fù)合

演講人:中國(guó)科學(xué)院院士、上海交通大學(xué)講席教授——張荻

時(shí)間:2024年03月22日 16:00

地點(diǎn):工學(xué)院南樓813報(bào)告廳

各位老師、同學(xué)們:

您好!2024年3月22日(周五)下午16:00-17:30,中國(guó)科學(xué)院院士張荻教授受邀來校講座,地點(diǎn)為工學(xué)院南樓813報(bào)告廳。詳情如下,歡迎全校師生參加!祝好,謝謝!


“南科大講堂”第349期

“工學(xué)院大講堂”第75期

“材料杰出講座系列”第24期


題 目: 金屬材料的構(gòu)型化復(fù)合

Title:  Architectured Metal Matrix Composites

時(shí) 間:2024年3月22日(周五)下午16:00-17:30

TiMe:  16:00-17:30, March 22 (Friday), 2024

地 點(diǎn):工學(xué)院南樓813報(bào)告廳

Venue: Room 813, South Tower, College of Engineering

主 講:張荻院士

Guest speaker: Academician Di Zhang

 

嘉賓簡(jiǎn)介

張荻,上海交通大學(xué)講席教授,中國(guó)科學(xué)院院士、金屬基復(fù)合材料國(guó)家重點(diǎn)實(shí)驗(yàn)室主任,國(guó)家973、重點(diǎn)研發(fā)計(jì)劃首席科學(xué)家。1982年畢業(yè)于西安交通大學(xué)機(jī)械系,1985、1988年分別獲日本大阪大學(xué)材料系碩士、博士學(xué)位,1988年迄今在上海交通大學(xué)任教。長(zhǎng)期從事金屬基及構(gòu)型化復(fù)合的應(yīng)用基礎(chǔ)研究,系統(tǒng)解決了復(fù)合制備、形變加工、構(gòu)效關(guān)系等關(guān)鍵科學(xué)與技術(shù)難題,基礎(chǔ)研究支撐應(yīng)用,研制的輕質(zhì)高強(qiáng)金屬基復(fù)合材料已應(yīng)用于我國(guó)空間站、探月工程及武器裝備等多種型號(hào)。獲國(guó)家自然科學(xué)獎(jiǎng)二等獎(jiǎng)2項(xiàng)(第一完成人),發(fā)表SCI收錄論文600余篇,SCI他引2.3萬余次,出版中英文學(xué)術(shù)專著3本,授權(quán)中國(guó)發(fā)明專利80余項(xiàng),制定國(guó)家標(biāo)準(zhǔn)3項(xiàng)。

Prof. Di Zhang, Chair Professor at Shanghai Jiao Tong University, Academician of the Chinese Academy of Sciences, and Director of the State Key Laboratory of Metal Matrix Composites. He is also a "Cheung Kong Scholar" of the Ministry of Education, and the Chief Scientist of the National 973 Program and Key R&D Program. He graduated from the Department of Mechanical Engineering of Xi'an Jiaotong University in 1982, and obtained his master's and doctoral degrees in Materials Science from Osaka University in Japan in 1985 and 1988, respectively. He has been teaching at Shanghai Jiaotong University since 1988. Prof. Di Zhang has long been engaged in fundamental research on the application of metal matrix and architectured composites. He has systematically solved key scientific and technological problems related to composite preparation, processing, and structure-property relationships. The lightweight and high-strength metal matrix composites developed by his team have been applied in various projects such as China's space station, lunar exploration, and weaponry and equipment. He has received the Second Prize of the National Natural Science Award twice as the first author, published over 600 SCI-indexed papers with more than 23,000 citations, authored three academic monographs in both Chinese and English, obtained over 80 Chinese invention patents, and formulated 3 national standards.


報(bào)告摘要

輕質(zhì)高強(qiáng)金屬基復(fù)合材料可滿足結(jié)構(gòu)輕量化和結(jié)構(gòu)-功能一體化設(shè)計(jì)需求,是高科技領(lǐng)域不可替代的關(guān)鍵基礎(chǔ)材料。針對(duì)復(fù)合設(shè)計(jì)與制備、界面及形變調(diào)控、復(fù)合構(gòu)效關(guān)系的關(guān)鍵科學(xué)與技術(shù)難題,建立了多元復(fù)合體系熱/動(dòng)力學(xué)模型,通過調(diào)控合金成分和增強(qiáng)體表面性質(zhì)改善和調(diào)控界面相容性,發(fā)現(xiàn)并揭示了增強(qiáng)體誘發(fā)動(dòng)態(tài)再結(jié)晶的熱變形機(jī)制,解決了復(fù)合制備與成形加工難題,突破了若干“卡脖子”核心關(guān)鍵瓶頸,打破國(guó)際封鎖,實(shí)現(xiàn)了在多種航天與武器裝備型號(hào)上的應(yīng)用突破。針對(duì)金屬基復(fù)合材料高強(qiáng)低韌失配難題,啟迪自然貝殼微納磚砌復(fù)合構(gòu)型可同步提高材料的強(qiáng)韌性的原理,創(chuàng)制出具有類貝殼微納磚砌復(fù)合構(gòu)型的CNT/Al基高強(qiáng)韌金屬基復(fù)合材料,揭示了 “微納磚砌”構(gòu)型的強(qiáng)韌匹配協(xié)同機(jī)理,并在航天領(lǐng)域得到了應(yīng)用驗(yàn)證,拓寬了金屬基復(fù)合材料研究領(lǐng)域。為進(jìn)一步深化構(gòu)型化復(fù)合研究,巧借生物構(gòu)型多樣性及其獨(dú)特結(jié)構(gòu)效應(yīng),提出了“遺態(tài)復(fù)合材料”的新概念,建立了秉承自然精細(xì)構(gòu)型的新型復(fù)合材料構(gòu)筑方法,創(chuàng)制了一系列具有生物精細(xì)構(gòu)型的新材料,發(fā)現(xiàn)了構(gòu)型與組分耦合的新現(xiàn)象,揭示了構(gòu)效機(jī)制,為構(gòu)型化復(fù)合研究提供了新方法。


Lightweight and high-strength metal matrix composites can meet the design requirements of structural lightweighting and structural-functional integration, serving as indispensable essential materials in high-tech fields . To address critical challenges in composite design, fabrication, interface control, and structure-property relationships, a thermal/kinetic model for multi-component composite systems was established. By adjusting the alloy composition and enhancing the surface properties, the interface compatibility is improved and controlled. The thermally induced dynamic recrystallization mechanism induced by reinforcement is discovered and elucidated. This breakthrough resolves issues in composite preparation and forming processing, overcomes several key bottlenecks, breaks international barriers, and leads to breakthrough applications in various aerospace and weapon equipment models. Additionally, to tackle the high-strength and low-toughness mismatch in metal matrix composites, inspired by the principle that the micro-nano brick-like composite structure of natural shells, a CNT/Al-based high-strength and tough metal matrix composite with a shell-like micro-nano brick-like composite structure has been created. The synergistic mechanism of strength-toughness matching of the "micro-nano brick" structure is revealed, and it has been applied and verified in the aerospace field, broadening the research field of metal matrix composites. In order to further deepen the research on architectured composites, borrowing from the diversity of biological structures and their unique structural effects, a new concept of "morph-genetic composites" is proposed, and a new method for constructing composites that inherit natural fine structures is established. A series of new materials with intricate biological structures have been fabricated. New phenomena of coupling between structure and components have been uncovered, and the structure-property relationship has been unveiled, providing a novel approach to the investigation of architectured composites.